1. Home
  2. Fact-checking

Fact-checking

Meta says it isn’t ending fact-checks outside the US yet

Brazil wasn’t pleased with Meta’s decision to rely on community notes, stating it would not subject its population to social media platforms that lead to “digital carnage or barbarity.”

Social media platform Meta has confirmed that its fact-checking feature on Facebook, Instagram and Threads will only be removed in the US for now, according to a Jan. 13 letter sent to Brazil’s government.

“Meta has already clarified that, at this time, it is terminating its independent Fact-Checking Program only in the United States, where we will test and refine the community notes [feature] before expanding to other countries,” Meta told Brazil’s Attorney General of the Union (AGU) in a Portuguese-translated letter.

Meta’s letter followed a 72-hour deadline Brazil’s AGU set for Meta to clarify to whom the removal of the third-party fact verification feature would apply.

Read more

Lightchain AI Brings AI and Web3 Together

How to detect fake news with natural language processing

Unravel the power of NLP in spotting fake news with various techniques and real-world examples.

The sheer volume of information produced every day makes it difficult to distinguish between real and fake news, but advances in natural language processing (NLP) present a possible solution.

In today’s digital era, the spread of information via social media and internet platforms has given people the power to access news from many different sources. The growth of fake news, meanwhile, is a drawback of this independence. Fake news is inaccurate information that has been purposefully spread to confuse the public and undermine confidence in reputable journalism. Maintaining an informed and united global community requires identifying and eliminating fake news.

NLP, a subfield of artificial intelligence, gives computers the capacity to comprehend and interpret human language, making it a crucial tool for identifying deceptive information. This article examines how NLP can be used to identify fake news and gives examples of how it can be used to unearth misleading data.

Sentimental analysis

To identify bogus news, sentiment analysis using NLP can be an effective strategy. NLP algorithms can ascertain the intention and any biases of an author by analyzing the emotions displayed in a news story or social media post. Fake news frequently preys on readers’ emotions by using strong language or exaggeration.

A news item covering a political incident, for instance, can be identified by an NLP-based sentiment analysis model as being significantly biased in favor of a specific party and using emotionally charged language to affect public opinion.

Related: 5 natural language processing (NLP) libraries to use

Semantic analysis and fact-checking

To confirm the accuracy of the material, fact-checking tools driven by NLP can analyze the content of a news piece against reliable sources or databases. By highlighting inconsistencies and contradictions that can point to fake news, semantic analysis aids in understanding the meaning and context of the language that is being used.

An NLP-based fact-checking system, for instance, can instantly cross-reference a news article’s assertion that a well-known celebrity endorses a contentious product with reliable sources to ascertain its veracity.

Named entity recognition (NER)

In NLP, named entity recognition (NER) enables computers to recognize and categorize particular entities referenced in a text, such as individuals, groups, places or dates. By identifying significant players, fake news can be debunked by discovering contradictions or made-up information.

Examples of nonexistent organizations or locales that NER algorithms may highlight as potential signs of false news are mentions in news articles about purported environmental disasters.

Recognizing sensationalism and clickbait

NLP models may be trained to spot sensationalized language and clickbait headlines, both of which are characteristics of fake news. These methods can assist in filtering out false information and ranking trustworthy news sources.

For instance, sensational phrases and inflated claims that frequently accompany clickbait articles can be found by analyzing headlines and content using an NLP-powered algorithm.

Related: 5 emerging trends in deep learning and artificial intelligence

Assessing the reliability of the source

NLP methods are capable of analyzing historical information on news organizations, such as their standing, reliability and historical reporting accuracy. This data can be used to evaluate the validity of fresh content and spot potential fake news sources.

For instance, an NLP-powered system may evaluate the legitimacy of a less well-known website that published a startling news report before deeming the content reliable.

Lightchain AI Brings AI and Web3 Together